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0 Introduction



Problems with Several Global Optima

Globally Multimodal Problems
@ More than one global optimum
@ Preferable to identify as many as possible

Examples
@ Robot path planning?: dynamic environment
@ Peptide design®: estimated docking energy

aHocaoQIu and Sanderson. Multimodal function optimization using minimal representation size clustering and its application
to planning multipaths. Evolutionary Computation, 5(1):81-104, 1997.
Belda, Madurga, Tarragé, Llora and Giralt. Evolutionary computation and multimodal search: A good combination to tackle
molecular diversity in the field of peptide design. Molecular Diversity, 11(1):7-21, 2007.

v
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Issues with Globally Multimodal Problems
To Obtain More Than One Optimum

Plain evolutionary algorithms are ineffective...
@ No mechanism to maintain balance between each basin
@ Selection randomly gives preference on one global optimum
@ Other optima tend to disappear after several generations

Convergence Taking Longer Time

Combining solutions located in different basins
@ Usually produces poor solutions?
@ Until population drifting toward a single basin

4M. Pelikan and D. E. Goldberg. Genetic algorithms, clustering, and the breaking of symmetry. In Proceedings of the 6th
International Conference on Parallel Problem Solving from Nature: 385-394
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Estimation of Distribution Algorithms (EDASs)

Characteristics

@ Building probabilistic model on promising solutions
@ Using built model to sample new candidate solutions
@ Recognizing inter-variable relationship by model building

v

Inter-Variable Relationship

@ Essential to address hard optimization problems
@ Automatic discovery of such information
@ Linkage Problem
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Model Building for Globally Multimodal Problems

Previous Works

@ UMDA + k-Means: multiple univariate models?
@ UEBNA: single Bayesian network with cluster variable®
@ ¢-PBIL: multiple simple order-2 models®

@M. Pelikan and D. E. Goldberg. Genetic algorithms, clustering, and the breaking of symmetry. In Proceedings of the 6th
International Conference on Parallel Problem Solving from Nature: 385-394

bJ. M. Pefia, J. A. Lozano, and P. Larrafiaga. Globally multimodal problem optimization via an estimation of distribution
algorithm based on unsupervised learning of bayesian networks. Evolutionary Computation, 13(1):43—-66, 2005.

CL. Emmendorfer and A. Pozo. Effective linkage learning using low-order statistics and clustering. Evolutionary
Computation, IEEE Transactions on, 13(6):1233—1246, Dec. 2009.
v

In This Work.
@ Consider multivariate probabilistic models
@ Build multiple models at each generation
@ Automate the selection of the number of models to use

v
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9 Marginal Product Models



Marginal Product Models (MPMs)

@ A product of marginal distributions on a partition of variables
@ Subsets of variables can be modeled jointly
@ Each subset is considered independent of others

The probability of generating a sample s;s,8354 = 0101:

P(S1 S05354 = 0101)

:P(S1 :0) X P(32:1,S4I1)X P(S(;:O)

=0.4x04x0.5.
\ [s1] \ [S2 4] [ss]

P(S1 = 0) =04 P(Sg =0,84 = 0) =04 P(S3 = 0) =05
P(S1:1)IO.6 P(SZIO,S4—1):01 P(33:1):0.5
P(sp = 1,84 = 0) = 0.1

P(32:1,S4:1):04

Table: A marginal product model

v
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Exenteded Compact Genetic Algorithm (ECGA)

@ Use marginal product models (MPMs).
@ Model building is performed in a greedy approach.
@ Structure and parameters are searched at the same time.

MPMs are measured by ...

@ Minimum description length (MDL) principle

@ How many bits are required to store the model?

@ How many bits are required to store the population?

@ Model complexity + compressed population complexity

Chuang & Hsu (AS IIS) Multivariate Multi-Model EDA 7/10 2010 10/31



Model Complexity, Cr,

@ The population is of size n.

@ The problem is of length ¢ with binary encoding.
@ The variables are partitioned into m subsets.

@ Each subsetis of size ki, i=1...m.

The marginal distribution of the ith variable subset

@ require 2% — 1 frequency counts to be completely specified,

@ each frequency count is of length log,(n + 1) bits.
m

Cm=loga(n+1)>" (2“' - 1)

i=1

v
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Compressed Population Complexity, C,

@ The population is of size n.

@ The problem is of length ¢ with binary encoding.
@ The variables are partitioned into m subsets.

@ Each subsetis of size k;, i =1...m.

To store the selected population with optimal compression
@ each variable subset = a compression block
@ optimal compression: probability p; = — log, p; bits

m 2K

Co=n)_ > —pijlogzpj,

i=1 j=1

V.
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e Estimating Multiple Models



Partition Solutions into ¢ Subsets

Assume that . ..
We are given

@ a set of nsolutions, S
@ cMPMs, {M,|y € {1,2,...,c}}
and being asked to assign,

@ for each solution, the fittest model among these ¢ MPMs

Suitability of Modeling

@ Compression performance < suitability of modeling
@ Compress better = fit better

@ Fittest model = encodes the solution to the shortest description
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Partition Solutions into ¢ Subsets

Assume that . ..

We are given
@ a set of nsolutions, S
@ ¢cMPMs, {Myly € {1,2,...,c}}
and being asked to assign,
@ for each solution, the fittest model among these ¢ MPMs

Approach

For each solution x, we should choose M, with the smallest

A= —log, pi;
i=1

@ mis the number of marginal distributions in M,
@ x takes the xjth partial solution in the ith variable subset

v
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Building Multiple Models

procedure BUILDMODELS(c, S)
Randomly pick a subset {d,|y € {1,2,...,c}} from S.
Estimate {M,|M, is a univariate model based on dj }.
for each x in S do
Yx < y such that M, yields smallest X for x.
end for
repeat
Y, < yx foreach x in S.
foreach yin {1,2,...,c} do
M, < greedy MPM search on {x|yx = y}.
end for
for each x in S do
Yx < y such that M, yields smallest A for x.
end for
until y, = y, forallx e S
return {M,|y € {1,2,...,c}} and {y«|x € S}.
end procedure
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@ The Complexity of A Set of Models



Naive Measurement Doesn’t Work!

Naive Measurement

To simply sum up all the complexity terms as

Z (Cm(My) + Cp(My))
y
Cm(M,) : model complexity of M,

Cp(M,) : compressed population complexity of solutions
associated with M,

Doesn’t Work Because . ..

Larger MPM sets will have biased advantage of being able to
@ split the population into smaller subpopulations
@ build overly-simplified models on the resulting partition
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Solution-Model Association Complexity, C;

The Missing Part ...
@ Additional information that maps each solution to its model

@ Should be included when measuring complexity

Definition
Additional bits required to tag each solution to its associated model

(o]
Ct = nz —py log, py ,
y=i

n : the number of solutions
¢ : the number of models

py - the frequency of assigning a solution to the yth model

v
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Complexity Measure for an MPM Set

The complexity of an MPM set {M, |y € {1,2,....c}} on modeling a
given set of solutions, S

c
C = Ci({yxIx € S}) + > _ (Cm(My) + Co(My))
y=1
Yx : the assignment of x to its most suitable model
Ct({yx}) : solution-model association complexity
Cm(My) - model complexity of M,

Cp(My) : compressed population complexity of solutions
associated with M,
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e Optimization using Multiple Models



Overall Procedure

Initialize a population P with n solutions.
while the stopping criteria are not met do
Evaluate the solutions in P.
S + apply selection on P.
c+ 1.
M'’,Y < BUILDMODELS(c, S).
C' + calculate complexity based on M’ and ).
repeat
M — M.
Cc«C.
c+c+1.
M’',Y « BUILDMODELS(c, S).
C' + calculate complexity based on M’ and ).
untilC’ > C
O« 0.
for each model M, in M do
O’ + generate new solutions by sampling M,.
O+ 0OuO0.
end for
Incorporate O into P.

end while
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e Experiments and Results



Constructing Test Problems
Subproblems

k, if u=k

k —1—u, otherwise

k, ifu=0
u—1, otherwise

k-bit trap function : f,(k)(s1 Sp---8k) = {

k-bit inverse trap function : #*)(sys; - - - 5¢) = {

where u is the number of ones in the binary string s1s, - - - Sk

The Plan ...

Design test problems that

@ assign different region of search space to different combination of f,(k) and ?t(k)
Introduce switch variables
@ a set of problem variables

@ its values specify the combination of f,(k) and ?,(k) to be used to evaluate the
corresponding solution

v
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F1: 2 Optima, Homogeneous Linkage

Concatenating ten ft(4) or ?,(4) and one switch variable, s44

G()(S1 Sz...S4o)7 if S41 =0

Fi(s182...841) = { Gr(s15. Su). i sur — 1

where Gy and Gj are defined as

9
Go(S182...540) = Z ft(4)(54i+1 S4i1254i+3Sai+4)
i=0
9
G1(8182...840) = Z ft(4)(34i+1 S4i+254i4354i14) -
=0

@ Split the search space into 2 equal halves
@ Each has a different optimum (all 1’s and all 0’s)
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F1: Results
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@ Single model(ECGA) vs. Multiple models(proposed approach)
@ Using tournament selection with tournament size 16
@ Each of those experiments are repeated for 50 times
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F»>: 4 Optima, Homogeneous Linkage

Using two switch variables

Goo(S1 Sz...S4o)7 if S41842 = 00
Go1(S1 Sg...S4o), if S41842 = 01
G10(S1 52...340), if S41842 = 10
G11(S1 Sz...S4o)7 if S41840 = 11

F2(S1 52...842) =

where the definition of Gog to Gy1 are

4

Goo(81---540) = 2(7{(4)(8&'4»1 .Sgiva) + 1 (Sair5..-Ssiss)) ,
=0
4 -

Go1(S1...540) = Z(l}(4)(ssi+1 ...Sgiya) + ft(4)(38/+5-~58i+8)) )
i=0
4 -

Gio(S1..-800) = Z(ﬂ(4)(58i+1 .Sgiva) + 1 (Sai15..-Ssiss)) ,
i=0

Gi1(81...540) = Z(ft(4)(38i+1 .Sgiya) + £ (Ssiv5...Ssivs)) -
i—0
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F>: Results
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@ Single model(ECGA) vs. Multiple models(proposed approach)
@ Using tournament selection with tournament size 16
@ Each of those experiments are repeated for 50 times
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F3: 2 Optima, Heterogeneous Linkage

Each optimum with different structural decomposition

HO(S1 Sg...S40)7 ifs41 =0

F3(5182...541) = { Hh(s19...510). i Se1 — 1

where Hy and H; are defined as

9
Ho(S1 Sg...S40) = Z f[(4)(S4,'+1 ...S4,'+4) s
i=0

8
Hi(s182...840) = Z f,(4)(S4i+3--~S4i+e) + f¢(4)(33934081 Sp) .
=0

@ Subfunctions are not aligned in variables

@ Disruption of good partial solutions is more likely to happen
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F3: Results
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@ Single model(ECGA) vs. Multiple models(proposed approach)
@ Using tournament selection with tournament size 16
@ Each of those experiments are repeated for 50 times
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We have introduced . . .
@ an iterative approach for building multiple models
@ a heuristics to choose the number of models to use
@ an optimization algorithm using the above

Empirical results suggest . ..
@ obtaining more global optima per run
@ reducing the number of generations spent for convergence
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