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. . . . . .

Problems with Several Global Optima

.
Globally Multimodal Problems
..

.

. ..

.

.

More than one global optimum
Preferable to identify as many as possible

.
Examples
..

.

. ..

.

.

Robot path planninga: dynamic environment
Peptide designb: estimated docking energy

a
Hocaoǧlu and Sanderson. Multimodal function optimization using minimal representation size clustering and its application

to planning multipaths. Evolutionary Computation, 5(1):81–104, 1997.
b

Belda, Madurga, Tarragó, Llorà and Giralt. Evolutionary computation and multimodal search: A good combination to tackle
molecular diversity in the field of peptide design. Molecular Diversity, 11(1):7–21, 2007.
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. . . . . .

Issues with Globally Multimodal Problems

.
To Obtain More Than One Optimum
..

.

. ..

.

.

Plain evolutionary algorithms are ineffective...
No mechanism to maintain balance between each basin
Selection randomly gives preference on one global optimum
Other optima tend to disappear after several generations

.
Convergence Taking Longer Time
..

.

. ..

.

.

Combining solutions located in different basins
Usually produces poor solutionsa

Until population drifting toward a single basin

a
M. Pelikan and D. E. Goldberg. Genetic algorithms, clustering, and the breaking of symmetry. In Proceedings of the 6th

International Conference on Parallel Problem Solving from Nature: 385–394
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. . . . . .

Estimation of Distribution Algorithms (EDAs)

.
Characteristics..

.

. ..

.

.

Building probabilistic model on promising solutions
Using built model to sample new candidate solutions
Recognizing inter-variable relationship by model building

.
Inter-Variable Relationship
..

.

. ..

.

.

Essential to address hard optimization problems
Automatic discovery of such information
Linkage Problem
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. . . . . .

Model Building for Globally Multimodal Problems
.
Previous Works..

.

. ..

.

.

UMDA + k -Means: multiple univariate modelsa

UEBNA: single Bayesian network with cluster variableb

ϕ-PBIL: multiple simple order-2 modelsc

a
M. Pelikan and D. E. Goldberg. Genetic algorithms, clustering, and the breaking of symmetry. In Proceedings of the 6th

International Conference on Parallel Problem Solving from Nature: 385–394
b

J. M. Peña, J. A. Lozano, and P. Larrañaga. Globally multimodal problem optimization via an estimation of distribution
algorithm based on unsupervised learning of bayesian networks. Evolutionary Computation, 13(1):43–66, 2005.

c
L. Emmendorfer and A. Pozo. Effective linkage learning using low-order statistics and clustering. Evolutionary

Computation, IEEE Transactions on, 13(6):1233–1246, Dec. 2009.

.
In This Work.....

.

. ..

.

.

Consider multivariate probabilistic models
Build multiple models at each generation
Automate the selection of the number of models to use
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. . . . . .

Marginal Product Models (MPMs)

A product of marginal distributions on a partition of variables
Subsets of variables can be modeled jointly
Each subset is considered independent of others

.
Example
..

.

. ..

.

.

The probability of generating a sample s1s2s3s4 = 0101:
P(s1s2s3s4 = 0101)

= P(s1 = 0)× P(s2 = 1, s4 = 1)× P(s3 = 0)

= 0.4 × 0.4 × 0.5.

[s1] [s2 s4] [s3]
P(s1 = 0) = 0.4 P(s2 = 0, s4 = 0) = 0.4 P(s3 = 0) = 0.5
P(s1 = 1) = 0.6 P(s2 = 0, s4 = 1) = 0.1 P(s3 = 1) = 0.5

P(s2 = 1, s4 = 0) = 0.1
P(s2 = 1, s4 = 1) = 0.4

Table: A marginal product model
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. . . . . .

Exenteded Compact Genetic Algorithm (ECGA)

Use marginal product models (MPMs).
Model building is performed in a greedy approach.
Structure and parameters are searched at the same time.

.
MPMs are measured by . . .
..

.

. ..

.

.

Minimum description length (MDL) principle
How many bits are required to store the model?
How many bits are required to store the population?
Model complexity + compressed population complexity

Chuang & Hsu (AS IIS) Multivariate Multi-Model EDA 7/10 2010 10 / 31



. . . . . .

Model Complexity, Cm

.
Suppose that . . .
..

.

. ..

.

.

The population is of size n.
The problem is of length ℓ with binary encoding.
The variables are partitioned into m subsets.
Each subset is of size ki , i = 1 . . .m.

.
Definition..

.

. ..

.

.

The marginal distribution of the i th variable subset
require 2ki − 1 frequency counts to be completely specified,
each frequency count is of length log2(n + 1) bits.

Cm = log2(n + 1)
m∑

i=1

(
2ki − 1

)

Chuang & Hsu (AS IIS) Multivariate Multi-Model EDA 7/10 2010 11 / 31



. . . . . .

Compressed Population Complexity, Cp

.
Suppose that . . .
..

.

. ..

.

.

The population is of size n.
The problem is of length ℓ with binary encoding.
The variables are partitioned into m subsets.
Each subset is of size ki , i = 1 . . .m.

.
Definition..

.

. ..

.

.

To store the selected population with optimal compression
each variable subset⇒ a compression block
optimal compression: probability pi ⇒ − log2 pi bits

Cp = n
m∑

i=1

2ki∑
j=1

−pij log2 pij ,
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Partition Solutions into c Subsets

.
Assume that . . .
..

.

. ..

.

.

We are given

a set of n solutions, S

c MPMs, {My |y ∈ {1, 2, . . . ,c}}
and being asked to assign,

for each solution, the fittest model among these c MPMs

.
Suitability of Modeling
..

.

. ..

.

.

Compression performance⇔ suitability of modeling

Compress better⇒ fit better

Fittest model⇒ encodes the solution to the shortest description
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. . . . . .

Partition Solutions into c Subsets

.
Assume that . . .
..

.

. ..

.

.

We are given

a set of n solutions, S

c MPMs, {My |y ∈ {1, 2, . . . ,c}}
and being asked to assign,

for each solution, the fittest model among these c MPMs

.
Approach
..

.

. ..

.

.

For each solution x , we should choose My with the smallest

λ =
m∑

i=1

− log2 pixi

m is the number of marginal distributions in My

x takes the xi th partial solution in the i th variable subset

Chuang & Hsu (AS IIS) Multivariate Multi-Model EDA 7/10 2010 15 / 31



. . . . . .

Building Multiple Models

procedure BUILDMODELS(c, S)
Randomly pick a subset {dy |y ∈ {1, 2, ..., c}} from S.
Estimate {My |My is a univariate model based on dy}.
for each x in S do

yx ← y such that My yields smallest λ for x .
end for
repeat

y ′
x ← yx for each x in S.

for each y in {1, 2, ..., c} do
My ← greedy MPM search on {x |yx = y}.

end for
for each x in S do

yx ← y such that My yields smallest λ for x .
end for

until y ′
x = yx for all x ∈ S

return {My |y ∈ {1, 2, ..., c}} and {yx |x ∈ S}.
end procedure
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. . . . . .

Naive Measurement Doesn’t Work!

.
Naive Measurement..

.

. ..

.

.

To simply sum up all the complexity terms as∑
y

(Cm(My ) + Cp(My ))

Cm(My ) : model complexity of My

Cp(My ) : compressed population complexity of solutions
associated with My

.
Doesn’t Work Because . . ...

.

. ..

.

.

Larger MPM sets will have biased advantage of being able to
split the population into smaller subpopulations
build overly-simplified models on the resulting partition
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Solution-Model Association Complexity, Ct

.
The Missing Part . . .
..

.

. ..

.

.

Additional information that maps each solution to its model
Should be included when measuring complexity

.
Definition..

.

. ..

.

.

Additional bits required to tag each solution to its associated model

Ct = n
c∑

y=1

−py log2 py ,

n : the number of solutions
c : the number of models

py : the frequency of assigning a solution to the y th model
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. . . . . .

Complexity Measure for an MPM Set

The complexity of an MPM set {My |y ∈ {1,2, ...,c}} on modeling a
given set of solutions, S

C = Ct({yx |x ∈ S}) +
c∑

y=1

(Cm(My ) + Cp(My ))

yx : the assignment of x to its most suitable model
Ct({yx}) : solution-model association complexity
Cm(My ) : model complexity of My

Cp(My ) : compressed population complexity of solutions
associated with My
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. . . . . .

Overall Procedure
Initialize a population P with n solutions.
while the stopping criteria are not met do

Evaluate the solutions in P.
S ← apply selection on P.
c ← 1.
M′,Y ← BUILDMODELS(c, S).
C′ ← calculate complexity based onM′ and Y.
repeat
M←M′.
C ← C′.
c ← c + 1.
M′,Y ← BUILDMODELS(c, S).
C′ ← calculate complexity based onM′ and Y.

until C′ ≥ C
O ← ∅.
for each model My inM do

O′ ← generate new solutions by sampling My .
O ← O ∪O′.

end for
Incorporate O into P.

end while
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Outline

.
. .1 Introduction

.
. .2 Marginal Product Models

.
. .3 Estimating Multiple Models

.
. .4 The Complexity of A Set of Models

.
. .5 Optimization using Multiple Models

.
. .6 Experiments and Results

. . . . . .
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Constructing Test Problems

.
Subproblems
..

.

. ..

.

.

k -bit trap function : f (k)t (s1s2 · · · sk ) =

{
k , if u = k
k − 1− u, otherwise

k -bit inverse trap function : f̄ (k)t (s1s2 · · · sk ) =

{
k , if u = 0
u − 1, otherwise

where u is the number of ones in the binary string s1s2 · · · sk

.
The Plan . . .
..

.

. ..

.

.

Design test problems that

assign different region of search space to different combination of f (k)t and f̄ (k)t

Introduce switch variables

a set of problem variables

its values specify the combination of f (k)t and f̄ (k)t to be used to evaluate the
corresponding solution
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F1: 2 Optima, Homogeneous Linkage

Concatenating ten f (4)t or f̄ (4)t and one switch variable, s41

F1(s1s2...s41) =

{
G0(s1s2...s40), if s41 = 0
G1(s1s2...s40), if s41 = 1

where G0 and G1 are defined as

G0(s1s2...s40) =
9∑

i=0

f̄ (4)t (s4i+1s4i+2s4i+3s4i+4) ,

G1(s1s2...s40) =
9∑

i=0

f (4)t (s4i+1s4i+2s4i+3s4i+4) .

.
Note
..

.

. ..

.

.

Split the search space into 2 equal halves

Each has a different optimum (all 1’s and all 0’s)
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F1: Results
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Figure: # of Optima Obtained
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Figure: Function Evaluations

Single model(ECGA) vs. Multiple models(proposed approach)

Using tournament selection with tournament size 16

Each of those experiments are repeated for 50 times
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. . . . . .

F2: 4 Optima, Homogeneous Linkage

Using two switch variables

F2(s1s2...s42) =


G00(s1s2...s40), if s41s42 = 00
G01(s1s2...s40), if s41s42 = 01
G10(s1s2...s40), if s41s42 = 10
G11(s1s2...s40), if s41s42 = 11

where the definition of G00 to G11 are

G00(s1...s40) =
4∑

i=0

(f̄ (4)t (s8i+1...s8i+4) + f̄ (4)t (s8i+5...s8i+8)) ,

G01(s1...s40) =
4∑

i=0

(f̄ (4)t (s8i+1...s8i+4) + f (4)t (s8i+5...s8i+8)) ,

G10(s1...s40) =
4∑

i=0

(f (4)t (s8i+1...s8i+4) + f̄ (4)t (s8i+5...s8i+8)) ,

G11(s1...s40) =
4∑

i=0

(f (4)t (s8i+1...s8i+4) + f (4)t (s8i+5...s8i+8)) .
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F2: Results
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Figure: Function Evaluations

Single model(ECGA) vs. Multiple models(proposed approach)

Using tournament selection with tournament size 16

Each of those experiments are repeated for 50 times
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F3: 2 Optima, Heterogeneous Linkage

Each optimum with different structural decomposition

F3(s1s2...s41) =

{
H0(s1s2...s40), if s41 = 0
H1(s1s2...s40), if s41 = 1

where H0 and H1 are defined as

H0(s1s2...s40) =
9∑

i=0

f̄ (4)t (s4i+1...s4i+4) ,

H1(s1s2...s40) =
8∑

i=0

f (4)t (s4i+3...s4i+6) + f (4)t (s39s40s1s2) .

.
Note
..

.

. ..

.

.

Subfunctions are not aligned in variables

Disruption of good partial solutions is more likely to happen
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F3: Results

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Population Size

A
ve

ra
ge

 N
um

be
r 

of
 O

pt
im

a 
Fo

un
d

 

 

Single model Multiple models
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Figure: Function Evaluations

Single model(ECGA) vs. Multiple models(proposed approach)

Using tournament selection with tournament size 16

Each of those experiments are repeated for 50 times
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. . . . . .

Summary

.
We have introduced . . ...

.

. ..

.

.

an iterative approach for building multiple models
a heuristics to choose the number of models to use
an optimization algorithm using the above

.
Empirical results suggest . . .
..

.

. ..

.

.

obtaining more global optima per run
reducing the number of generations spent for convergence
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