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Abstract 
 
Specific information on biomolecular events such as 
protein-protein and gene-protein interactions is essential 
for molecular biology researchers. However, the results 
derived by current keyword-based information retrieval 
engine contain a great deal of noisy information, which 
forces biologists to use a combination of several keywords 
to locate information. To resolve this problem,, we 
propose a question answering (QA) system that offers 
more efficient and user-friendly ways to retrieve desired 
information. In addition, QA system measurements may 
suffer from the same score problem, so the evaluation of a 
QA system may be unfair. An improved mean reciprocal 
rank (MRR) measurement, mean average reciprocal rank 
(MARR), and an efficient formula to reduce the 
computational complexity of the MARR are proposed to 
address the same score problem. With our syntactic and 
semantic features, our system achieves a Top-1 MARR of 
74.11% and Top-5 MARR of 76.68%. Compared to the 
baseline system, Top-1 MARR and Top-5 MARR increase 
by 16.17% and 18.61% respectively.  
 
1. Introduction 
 

Molecular biologists are primarily interested in relevant 
molecular pathways and underlying mechanisms [1]. 
Since molecular biology is a rapidly developing and 
changing field, researchers must be able to search recently 
published literature efficiently and effectively. Currently, 
most researchers use keyword-based search engines such 
as PubMed and Google [2]. However, with the 
overwhelming amount of new biomedical literature being 
published and the increasing complexity of molecular 
pathway descriptions, it is becoming much harder to find 
specific and relevant information about molecular 
interactions using these tools. 

Some studies need to identify entities that are strongly 
associated with query terms. The most studied type of 
entity is people (also known as expert search), which has 
been addressed by [3, 4]. In a previous work [5], we 

proposed the BESearch system to assist users in searching 
for the entities participating in a specific molecular event. 

In this paper, we propose a QA system that can answer 
questions about biomolecular events, such as gene and 
protein interactions. The answers to such questions 
usually consist of short pieces of information such as 
times, locations, as well as biomedical named entities 
(NEs) like protein, DNA, RNA, or cell. Accordingly, our 
system only focuses on factoid questions, to which the 
answers are NEs. 
 
1.1. System Workflow 
 

The proposed QA system is comprised of four 
components, namely Question Processing, Passage 
Retrieval, Candidate Extraction and Feature Generation, 
and Answer Ranking, which we describe in detail in the 
following sub-sections. 
 
1.1.1. Question Processing 
 

Question processing transforms natural language 
questions into search keywords and extracts features for 
answer ranking. In our work, question processing 
involves five steps: named entity recognition (NER) [6-9], 
semantic role labeling (SRL) [10, 11], question 
classification, and query modification. 

The NER step extracts named entities (NEs), such as 
protein and gene names, from the original question. Then, 
the SRL step extracts predicates (e.g., a verb) and 
corresponding arguments (e.g., noun phrases) from the 
question. Both the NEs and the SRL information will be 
transformed into features and used by the answer ranking 
module. 

In the question classification step, hand-crafted patterns 
are used to identify the target NE type, including protein, 
cell, DNA, and RNA, requested by the question (i.e., the 
answer’s NE type). The classified NE type is then sent to 
the ranking module, which filters out unmatched answer 
candidates. Each word in the remaining phrases is then 
examined and will be eliminated if it appears on the stop 
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word list. The remaining phrase segments are sent to the 
passage retrieval module as keywords for a Google search. 

Query modification is used to improve recall for 
queries where Google returns pages. First, using WordNet 
[12] and Longman's dictionary [13], we expand queries to 
generate a list of synonyms and other tenses for the main 
verb of the question. Then, we repeat the web search with 
the expanded query terms. If there are still no returned 
pages, we begin removing keywords to improve recall. 
 
1.1.2. Passage Retrieval 
 

The passage retrieval module is a Google-interfacing 
program that can send queries to Google and retrieve a 
collection of web pages, which we then sent to the answer 
extraction module. In the passage retrieval stage, we only 
retrieve pages from Google's index of the PubMed 
database on the NCBI website to avoid unnecessary noise. 
 
1.1.3. Candidate Extraction and Feature Generation 
 

 In this stage, we use two extraction technologies, NER 
and SRL, to extract candidate NEs and their 
corresponding features. NER extracts named entities for 
answer candidates, and generates features to help match a 
query with passages containing relevant NEs. We employ 
the GENIA Tagger [9] to identify four types of NE: 
protein, DNA, RNA, and cell. Biomolecular events in 
nominal form (e.g., protein expressions), in which the 
relevant NEs are involved, are also extracted. In our 
system, each candidate is output with the sentence 
containing it, and the sentence is treated as its supporting 
evidence. 

 
Table 1. Argument Types and Their Descriptions 

Type Description 

Arg0 agent 
Arg1 direct object / theme / patient 
Arg2-5 not fixed 
ArgM-NEG negation marker 
ArgM-LOC location 
ArgM-TMP time 
ArgM-MNR manner 
ArgM-EXT extent 
ArgM-ADV general-purpose 
ArgM-PNC purpose 
ArgM-CAU cause 
ArgM-DIR direction 
ArgM-DIS discourse connectives 
ArgM-MOD modal verb 
ArgM-REC reflexives and reciprocals 
ArgM-PRD marks of secondary predication 

 
We developed an SRL component [11] (F-score: 

84.76%) to generate semantic features for answer ranking. 
SRL can recognize the predicate of a sentence and its 

corresponding argument phrases, such as the agent, 
recipient, and location. The argument types recognized by 
our SRL component, and their descriptions are listed in 
Table 1. 

The SRL step also verifies whether answer candidates 
extracted by our NER component are the expected type. 
By comparing a candidate's semantic argument type with 
the expected type, we can eliminate many incorrect 
candidates and improve the overall accuracy. All the 
entity candidates along with their features are delivered to 
the answer ranking module after the extraction step has 
been completed. 
 
1.1.4. Answer Ranking 
 

Each NE extracted in the previous step is treated as an 
answer candidate, and the answer ranking module is 
responsible for calculating each candidate’s score. We 
employ a linear model to calculate a candidate’s score 
based on its features. To estimate feature weights more 
precisely, we propose a supervised weight tuning 
procedure, which we describe in the next section. 
 
2. Method 
2.1. Our Linear Answer Ranking Model 
 

To calculate an answer candidate’s score, the proposed 
ranking module uses a linear function (combination of 
features) to calculate the weighted sum of the candidate's 
features. Each candidate c identified in the candidate 
extraction step is represented as a binary feature vector fc. 
The ith dimension of fc (fci) indicates whether c meets the 
criterion of the binary feature function fi, which has a 
corresponding weight wi. Therefore, the score of a 
candidate c is calculated as follows: 

∑=•=
i

icc wfc
i

wf)score(  

where w is the weight vector that corresponds to fc. 
 
2.2. Tuning Feature Weights 
 

To improve the ranking results, we apply a weight 
tuning procedure. The procedure first generates all 
possible weight combinations of the eight features, whose 
weights have integer values between 1 and 10. This yields 
108 different combinations. To avoid generating too many 
weight vectors with the same score, we use the top-5 
MARR as the measurement of each weight vector, instead 
of the top-1 accuracy. 

Next, for each of the top 20 weight vectors, new 
vectors are created by changing the weights upward or 
downward by 0.5 or by leaving the weight of a given 
vector unchanged. This produces 3n-1 new vectors (n 
denotes the dimension number). The process is then 
repeated with an upward or downward change of 0.25, 
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and the algorithm is iterated repeatedly until the weight 
decrement reaches 0.125. We take the combination of 
eight weights with the highest top-5 MARR as the final 
feature weight set. 
 
2.3. Features  
 

Our QA system employs 8 features: Verb_Match (fVM), 
Argument_Match (fARGM), NE_Match (fNEM), 
NE_Similarity (fNES), KeyWord_Similarity (fKWS), 
Argument_Similarity (fARGS), Consecutive_Word_Match 
(fCWM), and Google_Reciprocal_Rank (fGRR). We denote 
the answer candidate as c, the query as q, the sentence 
containing c as s, and the page containing s as p. The 
eight feature types are defined as follows: 
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The first three features listed above are binary features. 

The next three represent the similarity between q and s. 
Another denotes adjacent keywords from s match that of 
q; and the last feature is p's Google reciprocal rank. The 
values of the last four features range between 0 and 1. 
 
2.4. An Improved Evaluation Measurement  
 

We consider two commonly used measurements of a 
QA system’s performance: the top-1 accuracy and the 
top-5 mean reciprocal rank (MRR). For a question set Q, 

the, top-1 accuracy reports the average accuracy of the 
top-1 answers for all the questions. It is defined as follows: 
 

top-1 accuracy = # of correct top-1 answers / |Q| 
 

The top-5 mean reciprocal rank (MRR) [14] is 
calculated as follows: 
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where qi is the ith question; rank(qi) is the rank of the first 
correct answer in the list of answer candidates for qi. In 
addition, top-1 MRR uses 1 in place of 5 in above first 
formula. 

However, there may be many answer candidates with 
the same score and all in the leading five places. This 
results in multiple answer candidate sequences with 
different RR score for a question but all based on the 
same score. Randomly selecting a candidate sequence and 
calculating its RR to represent all sequences may solve 
this problem. However, the true system performance may 
be overestimated or underestimated. Therefore, we 
propose a new measurement-the average reciprocal rank 
(ARR). The ARR score is the average of all possible 
sequences’ MRR scores, which is defined as follows: 
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where S is the set of all possible sequences including all 
the answer candidates for qi; and s is any sequence in S. 

To further explain the differences between MRR and 
MARR, we use the following example to compare the 
result of the RR and ARR method. Suppose we have three 
answer candidates A, B, and C; and they all have the 
highest score. However, only A is the correct answer 
candidate. Using the RR measurement, we could get 
different answer candidate sequences for A, B, and C. 
There are 3! = 6 sequences, as shown in Table 2. 
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Table 2. All Possible Sequences 
Sequence Top 1 Top 2 Top 3 RR 
1 A  B C 1 
2 A  C B 1 
3 B  A C 1/2 
4 B  C A 1/3 
5 C A  B 1/2 
6 C B  A 1/3 

 
The RR score for each sequence is listed in the last 

column. In this case, the QA system has one sixth 
probability to get one of these sequences. Consequently, 
each run of multiple experiments may produce different 
evaluation results. 

However, by using ARR, we can sum up all RR scores 
and divide the result by S. Therefore, we have:  
 

ARR(qi) = (1+1+1/2+1/3+1/2+1/3)/6 = 11/18 
 
which is a fixed value. In contrast with RR method, ARR 
can evaluate the QA systems’ performance precisely.  

However, the above ARR method has two limitations. 
(1) If the value of |S| is very large, calculating the ARR 
score directly is inefficient. For example, if 170 answer 
candidates have the highest score, we need to expand 
totally 170! permutations. (2) Technologically, there are 
no numerical data types can fit such large value. 

To solve the above problems in calculating the ARR 
score, we employ the following efficient formula: 
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where m represents the number of answer candidates with 
the same score; n denotes the number of correct answer 
candidates with the same score; and r indicates the 
number of answer candidates with the same score are 
calculated from which position. 

Using the above formula, we calculate the ARR score 
as follows (r=1, m=3, n=1):   
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Here, the score is equal to that of previous ARR 
method. It provides a convenient way of calculating a 
large number of answer candidates with the same score. 
 
3. Results 
3.1. Dataset 
 

To the best of our knowledge, there are no well-
established online factoid QA systems dedicated to the 
biomolecular domain. Hence, it is difficult to obtain a 
representative set of user queries for use as a benchmark. 
To create a question set, biologists in our laboratory 

referred to the TREC Genomics Track [15] to choose 
appropriate abstracts and generate candidate questions. 

 An independent committee composed of several other 
biologists then selected questions from among the 
generated candidates. The answer types of 400 
biomolecular event questions cover four NE classes, 
namely protein, DNA, RNA, and cell (including cell line 
and cell type). Furthermore, each question is based on one 
of 30 common biomolecular verbs described in [11].   

The following two sentences are examples of the 
selected questions: 
1. [R-Arg0Which protein] [predicateincreases] [Arg1levels of 

active nuclear NF-kappa B complex]? 
2. [R-AM-LOCIn which type of cell] does [Arg0human 

immunodeficiency virus type 1 Nef protein] 
[predicateinhibit] [Arg1NF-kappa B induction]? 

 
3.2. Experiment Design 
 

We designed several experiments to find the best 
settings for our QA system. In the following experiments, 
we cache the query results of all configurations to 
eliminate the influence of updates to Google's index. We 
take fVM, fNES, fNEM, and fKWS as the baseline system. 

First, we test the effectiveness of our query-
modification methods. To assess the contribution of each 
feature, we compare its related features by adding fARGM, 
fARGS, fCWM and fGRR to the baseline configuration 
individually. The five configurations are Baseline, ARGM, 
ARGS, CWM and GRR. Furthermore, we incorporate all 
the features into a sixth configuration, ALL. Finally, 
using the development set, we determine the best 
combination of all eight features, evaluate it on the test set, 
and then we compare the results with development-set 
performance. 
 
3.3. Experiment Results 
 

Table 3. Comparison of Different Features 
Config. fARGM fARGS fCWM fGRR top-1 MARR 

(%) 
top-5 MARR 

(%) 

Baseline     57.94 58.07 
ARGM +    63.79 65.37 
ARGS  +   62.46 64.16 
CWM   +  64.47 66.08 
GRR    + 59.71 61.38 
ALL + + + + 74.11 76.68 

 
Table 3 shows the performance comparison of fARGM, 

fARGS, fCWM, fGRR and ALL. When applied individually, 
fCWM and fARGM are the most effective features. fARGS can 
also improve the performance when used alone or with 
other features. By incorporating all features, the top-1 
MARR and top-5 MARR results are 74.11% and 76.68%, 
respectively. The actual weights of the ALL configuration 
determined by our tuning procedure are listed in Table 4. 
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Table 4.  Actual Tuned Weights 

Feature fVM fNEM fNES fKWS fARGM fARGS fCWM fGRR

Weight 1.0 7.8 2.5 3.0 10.8 1.0 7.7 1.0 

 
4. Discussion  
 

In this section, we provide some examples to 
demonstrate the effectiveness of each proposed syntactic 
or semantic feature and describe an additional experiment 
that compares MRR with MARR. 
 
4.1. The Effects of Using fCWM  
 
Question: 
Which protein inhibits the synthesis of Ig mRNA? 
Answer: 
 
Baseline CWM Passage 

16 20.17 These findings demonstrate that 
[TGF-beta] decreases B lymphocyte 
Ig secretion by inhibiting the 
synthesis of Ig mRNA and inhibiting 
the switch from the membrane form 
to the secreted forms of mu and 
gamma mRNA . 

16 18.50 Transforming growth factor-beta 
suppresses [human B lymphocyte Ig] 
production by inhibiting synthesis 
and the switch from the membrane 
form to the secreted form of Ig 
mRNA . 

 
The fCWM feature reinforces the keyword match feature 

by considering consecutive matches between questions 
and passages. The experiment result shows that fCWM 
increases accuracy by approximately 7%. We use the 
above example to demonstrate fCWM’s effectiveness. The 
first and second columns show the scores of the Baseline 
and CWM configurations, respectively. The third column 
shows answer candidates (the phrases in brackets) and 
their passages. In the baseline configuration, both 
candidates achieve a score of 16. However, after adding 
fCWM, the first candidate achieves a better score than the 
second. This is because the first passage’s CWM value is 
higher than that of the second. In the first passage, there is 
a consecutive five-word match, “the synthesis of Ig 
mRNA”, which is underlined. In the second passage, the 
length of the consecutive match “Ig mRNA” is only three 
words. This example demonstrates that fCWM is very 
useful for disambiguating candidates with similar contexts. 

 
4.2. The Effects of Using fARGM 
 

Here we give an example to illustrate how fARGM 
significantly enhances the performance of the top-1 
accuracy and top-5 MARR. In the question, ''Which 
protein interacts with the alpha subunit of TFIIA?'', we 
tag the semantic roles in addition to named entity tagging, 
so the question becomes:  
 
[R-Arg0Which protein] [predicateinteracts] [Arg1with the alpha 
subunit of TFIIA]? 
 

 Because of SRL, our QA system can determine the 
target role (Arg0) in addition to the answer type (protein); 
hence, it can, search for an Arg0 protein. The following is 
a sample answer text. 
 

First, [Arg0Tax] was found to [predicateinteract] [Arg1with 
the 35-kDa (alpha) subunit of TFIIA] [ArgM-LOCin the yeast 
two-hybrid interaction system]. Our QA system 
immediately identifies the "Tax" protein since it is an 
Arg0 protein. 
 
4.3. Comparing MRR with MARR 
 

To compare MARR with MRR, we conducted 30 
additional experiments on the ALL configuration 
described in Section 3.4, and using the same dataset. 
Figure 1 shows the results. We observe that 
 

Accuracy (%)
MRR

84 MARR
82
80
78

 
       Figure 1. Comparison between MRR and MARR 

MARR yields a stable evaluation result (Accuracy: 
76.68%), while MRR arbitrarily changes in response to 
each experiment. Figure 1 demonstrate that the proposed 
method can evaluate any QA system precisely and avoid 
the same score problem that characterizes MRR. 
 
5. Conclusion 
 

We have presented a QA system that provides 
biologists with another way to obtain the information they 
need. After combining all the syntactic and semantic 
features, the performance of our QA system achieves 
74.11% top-1 MARR and 76.68% top-5 MARR. 

66
68
70
72
74
76

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Times

76.68
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Although our system considers eight features with 
different weights, it still experiences the same score 
problem that affects widely used measurement methods. 
To resolve the problem, we propose a new 
measurement—the average reciprocal rank (ARR) which 
is the average of all possible RR score sequences. 
However, expanding all permutations to calculate the 
ARR is inefficient, so we further proposed an efficient 
formula and shown the equality of the results. 

In our future work we plan to: (1) increase the variety 
of answer types by including more NE classes, such as 
diseases and viruses; (2) expand our corpus sources from 
short abstracts to full papers or other authoritative 
biomedical digital libraries; and (3) link the extracted 
answers directly to other databases or resources to provide 
biologists with related information in a fast and efficient 
manner. 
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